海之声听力

耳蜗生理

海之声听力
    耳蜗的主要功能有二:①传音功能,即将前庭窗所受的声能传送到毛细胞;②感音功能,即将螺旋器受到的声能转换到蜗神经的电位。
    1. 耳蜗的传音生理声波振动通过镫骨足板传到外淋巴时,迅即传到整个耳蜗系统。镫骨内移时,蜗窗膜外突,导致前庭阶与鼓阶之间产生压力差,随之引起基底膜的振动,振动乃以波的形式沿着基底膜向前传播。声波在基底膜上的传播方式,是按物理学中的行波原理进行的,亦即行波学说(travelling wave theory)。基底膜的大振幅部位与声波的频率有关,亦即每一种频率的声波在基底膜上不同位置有一相应的大振幅部位:高频声引起的大振幅部位在蜗底靠近前庭窗处,低频声的大振幅部位靠近蜗顶,中频声则在基底膜的中间部分发生共振。由此可知,高频声波仅引起前庭窗附近基底膜的振动,而低频声波从蜗底传播到蜗顶的过程中,会导致较大部分的基底膜发生位移,但在其共振点部位的振幅大。亦即低周的基底膜对各种频率的声波均产生波动,而顶周的基底膜只对低频声波产生反应。基底膜的不同部位感受不同的声波频率(图2-2-6):蜗底区域感受高频声,蜗顶区感受低频声。
    英国人Kemp在1978年发现了了耳声发射这一现象,近年来人耳记录到的耳声发射(otoacoustic emission,OAE)证实了耳蜗内存在着主动释能活动,此过程为生物电能向机械能量的转换,从而说明耳蜗具有双向换能器的作用。一般认为其来源于耳蜗,经听骨链及鼓膜传导,释放到外耳道的音频能量。此种主动作用的生理意义在于增强基底膜对声刺激的机械反应,从而提高频率分辨力和听觉敏感度。
    2.耳蜗的感音生理 基底膜的内缘附着于骨螺旋板上,而盖膜的内缘则与螺旋板缘连接。因二膜的附着点不在同一轴上,故当行波引起基底膜向上或向下移位时,盖膜与基底膜各沿不同的轴上下移动;因而盖膜与网状板之间便发生交错的移行运动,即剪切运动(shearing motion),两膜之间产生了剪切力(shearing force)。在剪切力的作用下,使毛细胞的纤毛发生弯曲或偏转(图2-2-7),引起毛细胞兴奋,并将机械能转变为生物电能,而使附于毛细胞底部的蜗神经末梢产生神经冲动,经蜗神经及其中枢传导径路上传到听觉皮层,产生听觉。
    听觉系统生理
    环境中各种各样的声音究竟在听觉神经系统内引起了什么变化,实际上是应用电生理学技术之后才系统地阐明的。耳蜗对声音的频率、强度、时间因素仅完成了初步分析过程,对声音信息的进一步识别,有赖于听神经、脑干各级听觉中枢与大脑皮层听区的复杂机能活动。
阅读
服务中心